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Longitudinal Impedance of Simple
Cylindrically Symmetric Structures

SEMYON A. KHEIFETS

Abstract — A method derived (1] for calculation of the electromagnetic
fields of a point charge moving along an axis of cylindrically symmetric
structures is applied here to cavities and collimators with side tubes. The
longitudinal impedance for such structures is calculated. In particular, the
impedance for a pipe loaded with a thin washer is also calculated. It is
shown that for large particle energy and for high frequencies, the longitudi-
nal impedance of a collimator can be found analytically and that it is a
constant over a broad range of frequencies.

I. INTRODUCTION

METHOD OF calculating the electromagnetic (EM)

fields excited by a point charge Q moving with a
constant velocity u along the axis of a cylindrical, perfectly
conducting pipe with an abrupt change in its cross section
was developed and published recently [1]. This method can
be generalized to make it applicable to any cylindrically
symmetric metallic structures that can be cut orthogonal to
the axis of symmetry into a number of regions such that
within each region the cross sections are identical. The
regions are assumed to be electrically connected to each
other. Each region can be bounded by one or several
coaxial metallic cylindrical surfaces.

In essence, the generalized method consists of three
steps. First, the Fourier components of the EM fields in
each region are expanded into series of cylindrical waves.
Each wave satisfies the boundary conditions on the cylin-
" drical metallic surface. The series still contain an infinite
number of yet unknown coefficients. Second, continuity
and additional boundary conditions are imposed on the
EM field at each cross sectional interface between differ-
ent regions (field matching). Third, the resulting tran-
scendental equations are transformed into an infinite set of
linear algebraic equations for the expansion coefficients.
The approximate solution of the algebraic set of equations
is then obtained numerically by truncating it. Physically

interesting quantities, for example, the fields and the longi-.

tudinal coupling impedance, are expressed in terms of
these coefficients.

In the present paper, this method is applied to the case
of a point charge moving along the axis of either of the
two structures sketched in Fig. 1(a) (a cylindrical cavity
with side pipes) and (b) (a cylindrical collimator). The
longitudinal impedances for such structures are calculated.
The results found here for a cavity with the side pipes of
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equal cross sections are compared with calcula’tions per-
formed by another method of matching fielcis on the
cylindrical surface r = a [2]. This comparison s hows good
agreement.

There is a certain advantage in matching f ields on the
interfaces z = constant rather than on the in terfaces r =
constant. First, it lets one consider structures with indenta-
tions. Next, the two side pipes can have d ifferent radii.
The method presented allows one to take this case into
account practically without any additional complications.
It is also straightforward to extend the met' hod to the case
of a charge moving off the axis to find the transverse
impedance.

Some other practically interesting struct ures are particu-
lar cases of geometries considered here. (Jne example is a
cylindrical pipe loaded with a 'washer. Another example
considered here is a flange connexction o f two tubes which
in the presence of a vacuum edge may form a very thin
cylindrical cavity. Two geometries consi dered in [1] (a pipe
with an abrupt increase or decreasse of 1 ts cross section) are
also particular cases of geometries corisidered in the pre-
sent paper. ‘

Of particular interest is the quiestio n of the behavior of
the impedance for very high frequencies. For the case of a
collimator, the asymptotic behavior f the impedance can
be calculated analytically. This calcul.ation can be found in
the Appendix. Under the assump tior1s made in the present
work, the impedance is independ en't of the frequency and
is equal to 120 In(a/b) @, where a is the cross section
radius of the pipe at the exit of the indentation.

The equations derived here are valid for any particle
velocity 8 = u /¢, with ¢ the speed of light. Thus, one can
solve for fields radiated by a cliarge with an arbitrary
energy. A note of caution is approjpriate here. For very low
B, the assumption that velocity is constant does not hold.
In that case, the problem shovuld be solved self-con-
sistently, as was done for example : in [3]. A relativistic case
can be easily obtained by assumi ng y > 1, where v is the
Lorentz factor of the charge. M ost results obtained here
are pertinent for large v.

Throughout this paper, the rig sht-hand cylindrical coor-
dinate system r, 8, z is used. The current density of a point
charge moving along the axis of the pipe is

Qu
j=e,0+e00+e27“8(r)8(z—ut) (1)

where 8(x) is Dirac’s 8 function. If one defines the
Fourier components of any vector ¥ for the angular

0018-9480 /87 /0800-0753$01.00 ©1987 IEEE



754
“
1
L 3
1 0 2y af: ¢
2 3
_ 2] I Jer\t ST
Qu - g/2\/ z g2 Qu -g/Z\/ z g/2

(a) (b)

Fig. 1. Cydindrically symmetric structures considered in the present
work. (a) Cawity and (b) collimator of radius » and length g with side
pipes of rewdii a; and a,.

frequency « > by

~ 1 + 00 .
V= Ef‘w dt Vexp {iwt } (2)

then the Foui -ier components of the current density are

D+ ed Qa8(r)
= + ' .
J=eDtelte—— exp{iwz/u}

(3)

II. FIELD EXPANSIONS

Using well-known expressions for the EM fields of a
point charge moving along the axis of a cylindrical pipe [4]
and for eigenfunc:tions of a pipe [3], it is easy to represent
the EM field comyronents for any region shown in Fig. 1 as
an expansion int() series of cylindrical waves with un-
known coefficient:s (see, e.g., [1]). Let us introduce the
following notation:

k=w/c

T=k,/By

M= Qk /mcy*B?
G(r,d) =K\ )+ I,(1r)Ko(7d ) /I,(7d)  (7)
Go(r,d) =Ko('m')—Iy(rr)Ko(7d) /Iy(7d)  (8)

where d=a,. a,, o' b and K,, K, I,, and I, are
modified Bessel functions of the second and the first kind
and the zeroth and firs t order, respectively.

Then for the diffrac tion region z> g/2 (region III in
Fig. 1), we have

4)
(5)
(6)

EY =yMG,(r,a,)exp {ikz/B}—iZ,B} (v,/a,)
.Jl(vnr/aZ)Aa 2nexp{iZAa2n}

E} =—iMGy(r,a,) exp {ikz/B} +EnB,,+(vn2/a§)
'JO(Vnr/aZ)expl{iz}\aZn} (10)

Hif =vBMG\(r, a,)e.xp{ikz/B}~ ikZ,B (v,/a,)
.Jl(ynr/az)exp {iZ}\azn} (11)

where A ,, =\k*—v2/a3 , and J, and J; are Bessel func-
tions of the first kind and . of the zeroth and the first order,

respectively.
Similarly, for the reflect ion region z < — g /2 (region I

(9)
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in Fig. 1), we have
B =yMG\(r, a)exp {ikz/B) +i2,B; (v,/a;)
i (vyr/a) N aexp { — izh a1, )
E-=—iMG,(r,a;,)exp {ikz/B8}+3,B, (v/a})
Jy(vr/a))exp{—izA 1, } (13)
Hy =yBMG (r, a;)exp{ikz/B}—ikS,B; (v,/a,)
Jy(ver/a)exp {—izh g, ) (14)

where A, =yk?—»l/al.
Finally, for the intermediate region —g/2<z<g/2
(region II in Fig. 1), we have

E)=yMG(r,b)exp {ikz/B}—iZ,(v,/b)
'Jl(vnr/b)xbn(c-# exp {iZAbn } -C exp { - iZ}‘bn})
(15)

(12)

E%=—iMGy(r,b)exp {ikz/B} + En(vnz/bz)
Jo(v,r/b)(C*exp {izh,, } + C exp{ —iz)A,,})
(16)
H) =yBMG\(r, b)exp(ikz/B) - ikZ,(v,/b)
J(v,r/B)(C*exp {izA,, } + C exp{—izA,,})

(17)
where A, =\k*—»2/b*.
All the other field components are zero due to cylin-
drical symmetry of the problem.
The eigenvalues », are defined by the boundary condi-
tion E,(z)=0 for r=d, which gives the following for-
mula for »,:

Jo(¥,) =0, (18)

They are assumed to be arranged in ascending order:
p,<py<--- <co. In all field expansions above, B,* and
C* are unknown coefficients to be defined by the
boundary and continuity conditions on the interfaces z =
constant between adjacent cylindrical regions.

To ascertain the proper asymptotic behavior of the
diffracted field for z = oo and the reflected field for z —»
— o0, the imaginary parts of the propagation constants
should be chosen positive (such a choice is known as the
radiation condition):

n=1,2,.--,00.

ImA,,>0
ImA,,,>0.

(19)
(20)

The same sign is chosen for the propagation constant in
region 1I:

ImA,,>0.

(21)

Each term in expressions (9)—(11) for the diffracted field
describes either the nth wave propagating in the positive z
direction, if k>v,/a,, or an evanescent wave, if k<
v,/a,. Similarly, each term in expressions (12)—(14) for
the reflected field describes either the nth wave propagat-
ing in the negative z direction, if k> », /a,, or an evanes-
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cent wave, if k <», /a,. For any given k, there are a finite
number of propagating and an infinite number of evanes-
cent waves.

11T

The expansions of the EM fields given in the previous
section are constructed in such a way as to fulfill the
boundary conditions on the wall of the pipe in any region

with a constant pipe radius. For example, for » = a, and
for all z>g/2,

BOUNDARY AND CONTINUITY CONDITIONS

Ef(z)=0. (22)

Consider now an interface between two regions. In the
plane of the interface:

(a) the radial component of the electric field on the
inner side of the wall should be equal to zero for
all »;

(b) all three components of the field should be continu-
ous across the opening.

For example, for a cavity at z=g/2,

E’r)=0forall a,<r<b (23)
and for all r <a,,
E} (r)=EX(r) (24)
Hi (r)=H)(r) (25)
E'(r)=EXr). (26)

Analogous expressions can be written for another cavity
interface z = — g/2 and for a collimator. One of the three
conditions (24)—(26) is redundant {4] since all three field
components satisfy Maxwell’s equations. In what follows,
conditions (24) and (25) are chosern to determine unknown
expansion coefficients.

We introduce now the dimensionless variables

k= kb (27)
p=1l/q=a/b (28)
p=1/q,=a,/b (29)
g=g/2b (30)
p=r/b. (31)

In these variables, the propagation constants are
Aatn=Nanb =yx*=v}/pi (32)
Xa2n=}\a2nb=VK2_Vnz/P% (33)
Npw=Npab=1K2— 2. (34)

It is also useful to redefine the expansion coefficients

- = —(2ibQ/mc)exp { — ig‘(n/B + Xaln)}xn (35)

S = —(21bQ/7rc)exp{+zg(x/B+>\bn)}t (36)
= —(2ibQ/mc)exp { —ig(x/B=X,,)}y,  (37)
= +(21bQ/7rc)exp{+zg(:c/ az”)}z (38)
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The expressions for the field components in the plane

z= — g/2 in these variables become

= (20 /mcb)exp{ — ixg/B}[(x/2¥82)Gy(r, a;)
+(1/p) %0, 01 (70 /1) R 1)

= (20 /mcb)exp { - ixg/B}[(x/24B%) G (r, b)
+ 2,0, 51(5,0) Ry (1,030 {268 (/B + X))} = 3,)]

(39)

(40)
B =~ (2iQ/mch)exp { — ing/B} (1 /2Y7B?) Gy (r, ay)
+(1/p1)2nxnvn (V P/Pl)] (41)

E? = —(2iQ/nch)exp { — ixg/B}[(x/2v°87)Go(r, b)
+32,v2,(v, p)(t exp {2lg('€/,3 + >\bn)} + y,,)]
(42)

Similar expressions for the fleld components in the plane
z=g/2 are

= (2Q/ncb)exp {ixg/B }[(x/2v8%)G
+(1/P2) 22,201 (2,0/P2) X 12,]
= (2Q/mcb)exp {ixg/B }[(x /2¥8) Gy(r, b)
+ 2,5, 01 (7,0) Xy, (1, — yoexp{ —2i8(x /B - X,,)})]
(44)
= —(2iQ /mcb) exp { ixg/B }[(x/2v*B)Go(r. a,)
_(1/P2)E z VZJO(" P/Pz)]
E? = —(2iQ/mcb)exp {ixZ/B}[(k/2Y78)Gy(r. b)
+ Env,,zJo(vnp)(tn + y,exp { —2i§(;c/,8 + Xb,,)})] )
(46)

Note that these expressions are valid both for a cavity for

which p, <1 and p, <1 and for a collimator for which
pi>land p,>1.

(r,a3)

(43)

(45)

IV. Basic EQUATIONS

Unknown coefficients x,, y,, t,, and z, are defined by
the set of equations which are obtained by substituting
expressions (39) through (46) into (23) through (25) for the
interface z=g/2 and similar equations for the second
interface z=—g/2. As was explained in [1], this set of
transcendental equations can be replaced by a simpler set
of algebraic equations.

Let us introduce a vector of coefficients

xn
xy= ); ,  N=1,2,3,4 (47)

Then the set of equations can be written in matrix form:
SNZ,AUXY=P[,  L,N=1,2,3,4;
n,l=1,2--- 0

(48)
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TABLEI
COEFFICIENTS A}y AND RIGHT-HAND SIDES P} OF (48)
FOR A CAVITY

1 2 3 4
L
203 Xa1nBin(P1) | Mond2(vn)oni | —XonJ?(Vn)bai B 0 Jo(upr)/Io(ra:) (f + (79)?)
2 | viTt(vn)bimn | —2032m(p1) | —2p3vidni(p1)Es 0 —(rb)pindr () Jo(7a1) Fa1)/ (1} + (ra1)?)y
0 Yo T2 (0n)0uiB= | =X d2(vn)bn | 203 Na2nin(p2) Jo(uip2) [ Io(raa) (v} + (78)?)
0 —2p}vidm(P2)E— | —20§20wmi(p2) | —V3J(vn)bn | —(rb)pRudi(v1)Jo(ra2) F(az) / (1} + (raz)?)y

4
E,=
ay/b g

g/2b.

exp(18(k /B + 7\,,,,)); E_=exp(—2i1g(x /B — Xl,,,)); Fla)=Ky(18)/Iy(vh)— Ky (1a) /T (1a); py=a, /b; 2=
= b

TABLE I1
COEFFICIENTS A%, AND RIGHT-HAND SIDES P/ OF (48)
FOR A COLLIMATOR

N 1 2 3 4
L

1 | XaandBvn)on | 208 Xindinlar) | 2025t (@) E+ 0 =Jo(viq)/To(rar)(vf + (rb)?)

2 | 2¢{vidmlm) | —ViJi(va)bin | —VRJR(Va)8nE+ 0 —(rd)atndi () Io(ra1) F(a1)/ (v} + (ra1)*)y
3 0 203 %on8in(02) E- | —203Xsnb1n(02) | Farnd2 (V)b —Jo(vigz)/Io(ras) (v} + (rb)?)

4 0 —Vadt )i E_ | 1T (vn)bin | ~203020ni(a2) | —(r8)aRuidi (W) To(ras) Faz)) (1 + (raz)?)y
E,=expQig(k/B+X,,)i E_=exp(—213(x /B — Ao Dt F(a) =Ko (rb)/Io(h)— Ko(ra)/Ty(ra); qy=b/ay; q, =

b/ay; §=g/2b.

Equation (48) constitutes an infinite system of linear alge-
braic equations for the unknown coefficients X,

The coefficients A} and the right-hand sides P/ of the
matrix equation (48) for a cavity are presented in Table 1.
There

¢ ( )_ VnJO(Vmp)Jl(Vn)/(Vnz_pzyrgz) lf Vn;épym
T a2 ) (5, + o) it 5, = pr,.
(49)
In particular,
¢mn(1) = 8nmJ12(1/n)/2. (50)

For a collimator, (48) looks the same but its coefficients
and the right-hand sides have a different meaning and are
presented in Table II.

Two geometries considered in [1], a pipe with an abrupt
increase or decrease of its cross section, are particular
cases of geometries considered in the present paper. For
example, the case of a charge passing through a decreasing

cross section can be obtained by assuming a,=b (or,
equivalently, p, =1) and g =0 in equations describing a
collimator. The same case can be obtained by assuming
a;=b (or, equivalently, p,=1) and g=0 in equations
describing a cavity. Similarly, the case of a charge passing
through an increasing cross section can be obtained by
assuming a; =b (or, equivalently, p,=1) and g=0 in
equations describing a collimator. The same case can be
obtained by assuming a, = b (or, equivalently, p, =1) and
g = 0 in equations describing a cavity. Using (50), it is easy
to see that with necessary changes in notation, (48) indeed
reduces to (12) in [1].

Notice that for a smooth pipe for which p, = p,=1 or
q1=¢q,=1, all P/ =0. Since Det |47, +# 0, only the trivial
solution XY =0 exists. That means that there is no radia-
tion in a smooth pipe, as it should be.

V. LONGITUDINAL COUPLING IMPEDANCE

The usual expression for the longitudinal impedance is

Z(k)=— —ZQIfiodzEzR(r =0,z)exp{—ikz/B} (51)
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where ER is the radiative part of the field, i.e., the part
which depends on the expansion coefficients. Sometimes
an alternative definition of the impedance is used in which
the integration is performed over the difference between
the full field and the field of a charge in a smooth pipe.
This definition is useful only if both side pipe cross
sections have equal radii 4, = a, = a or, equivalently, p,
= p, = p. In this case, the real parts of the impedance are
the same according to both definitions. The imaginary
parts differ by

AZ = —iZkgF(a)/my?B> (52)

where Z, = 377  is the impedance of free space and F(a)

is defined in Table I. In the general case of different pipe

radii, definition (51) is more useful and is used below.
Performing the integration in formula (51), we find

Z(k) =~ (Zo/m)Z,{ %, (x /B =K ) /[ 1+ (70, /3,)’]

+ yu(k/B+X,)(exp {2ig(X, — /B)} ~1)/
[1+(b/5,)]
~1,(k/B=X,)(exp {2ig(X, +x/B)} -1)/
[1+(rb/3,)]

+Zn(K/B+Xa2n)/[1+(’ra2/yn)2]}' (53)

Formula (53) is valid for both a cavity and a collimator.
The expansion coefficients x,, y,, ¢, and z, in this
formula should be understood as solutions of correspond-
ing equations for a cavity and a collimator, respectively.

In the ultrarelativistic limit y — oo, there is an alterna-
tive way of calculating the impedance for a cavity with
equal side pipe radii. Instead of integrating the field along
the axis of the structure » = 0, one can as well integrate the
field along any line = R [6]-[8]:

27 o0 ~
Zp(k)=— E/_wdzEz(r =R, z)exp(—ikz). (54)

Performing the integration, we find

ZR(k)=_(ZO/’”)En{anO(VnR/a)(K_X )
+y,,J0(V,,R/b)(x+7\b)(exp{ g(R,—x)} - )
= tudo(n,R /5)(k =K, )(exp(228(R, + )} -1)
+2,d5(m,R/a)(k + X 5,) }- (55)

A remarkable feature of this formula is that the right-hand

side of it does not depend on R in spite of its explicit

presence there.

In particular for a cavity, a convenient choice is R = a.
Due to the boundary condition (22), the regions z > g/2

and z<—g/2 do not contribute to the value of the
integral. Putting R = a in (55) yields

Zew (k) = ~(Zo/m) 2, Jo (5, 0) { (k +X,)
exp {2ig(X, — x)} —1]

—t,(k—X,)[exp {2ig(X, +x)} —1]}.  (56)
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Fig. 2. Real part of the longitudinal impedance of a cavity as a function
of dimensionless frequency pk =aw/c. Here, a=a;=a,, g/2b=
0.302, and a /b = 0.152. In the expansions (9)—(17), 20 first terms were
used.
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Fig. 3. The same as in Fig. 2 but for the imaginary part of the
impedance.

For a collimator, a convenient choice is R = b. In this
case due to boundary condition (22) the region — g/2 <z
< g/2 does not contribute to the value of the integral, and
we obtain (¢, =b/a,, g, =b/a,):

Zon(k) = = (Zo /)2, [ 2,0 (v,0:) (k= X;)

+ 2,00 (#.,) (k + 7\1,)]. (57)
For large v, the impedances obtained by means of all the

formulas (53), (55), (56), and (57) agree very well and this
feature is used as a check in numerical codes.

VI

In general, the solution of (48) can be found only
numerically. Two computer codes, RCVTY (for the geom-
etry sketched in Fig. 1(a)) and RCLMTR (for the geome-
try sketched in Fig. 1(b)), have been written for this
purpose. An approximate solution is found by truncating

NUMERICAL RESULTS AND CONCLUSIONS
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Fig. 5 The same as in Fig. 4 but for the imaginary part of the

impedance.

the matrix to a finite size, inverting it, and solving for the
coefficients. In a normal case, i.e., not for extreme values
of parameters, a matrix size of 20X 20 is usually sufficient
to obtain reasonable accuracy. The results are checked and
found to be independent on the matrix size up to the
maximum size of 100X100 allowed by the codes. The
programs, if asked, can do an additional check for the
correctness of the solution. Namely, the coefficients found
are used to restore the continuity and the boundary condi-
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Fig. 6. Real part of the longitudinal impedance of a very thin cavity
(e.g., built of flanges) as a function of dimensionless frequency px =
aw/c,with a=a,=a,, g/2b=0.025, and a/b=05.
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Fig 7. The same as in Fig. 6 but for the imagmnary part of the

impedance.

tions at the interfaces between different cylindrical re-
gions.

As an illustration of the results obtained with the help of
RCVTY, the real and imaginary parts of the longitudinal
impedance for a cavity with the same dimensions as used
in [2] are represented in Figs. 2 and 3, respectively. The
plots are in good agreement with the result of that paper
for all the frequencies except those around the cutoff
frequencies of the pipe ka = 2.405.

The dependence of the impedance on the charge energy
is illustrated in Figs. 4 and 5. Here, the real and imaginary
parts of the longitudinal impedance of a cavity are plotted
for several Lorentz factors y. As one can see, from the
point of view of the impedance, y=35 is already close
enough to oo and y =10 is indistinguishable from co.

The real and imaginary parts of the impedance of a very
thin cavity built out of two pipe flanges and a vacuum
edge electrically connecting them are plotted in Figs. 6 and
7, respectively.
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Fig. 8. Real part of the longitudinal impedance of a washer in a pipe
(the SLAC type of structure) as a function of dimensionless frequency
pr=aw/c, with a=a,=a,, g/2b=0217, and a /b =0281.
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Fig. 9. The same as in Fig. 8 but for the imaginary part of the
impedance.

To illustrate the results obtained with the help of
RCLMTR, the real and imaginary parts of the impedance
of a washer in a pipe (thin collimator) for the SLAC
geometry are plotted in Figs. 8 and 9, respectively.

The impedance of a long collimator can be seen as the
sum of two impedances for an abrupt increase and de-
crease of the pipe cross section. The impedance in the
range of large frequencies, found using formula (57), coin-
cides with the impedance of an abrupt increase of the pipe
cross section found in [1]. This is a consequence of the fact
" that the impedance of an abrupt decrease of the pipe cross
section tends to zero for large frequencies.

An analytic derivation of the asymptotic formula for the
impedance of a collimator is presented in the Appendix.
As is discussed there, the impedance is constant in the
frequency range k <y and then falls down.
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It is'interesting to estimate the total energy loss AW of a
distributed charge passing through a collimator:

o0
MW= [ de|f(w)*ReZey (k) (58)
- o0
where f(w) is the Fourier transform of the charge density.
Let us assume f(w) to be Gaussian:

f(0)=(Q/27)exp(~ k’o’/2) (59)

where ¢ is the rms of the longitudinal charge distribution.

If one assumes that ReZ_; is constant and given by
(A6), then the total energy loss is

2

AW Ina/b. (60)

"%
This expression is valid when o > b/y and agrees with the
formula for the total energy loss of a charge passing
through an abrupt change in a pipe cross section obtained
in [12].

For a point charge, o = 0. If one assumes that Re Z_, is
constant for k <y and is zero for k > vy, as was discussed
above, then the total energy loss is proportional to y. That
conclusion is in -agreement with an estimate [9] and
numerical calculations [10], [11] for a charge passing
through a hole in a screen.

APPENDIX
AsyMPTOTIC FORMULA FOR THE IMPEDANCE
OF A COLLIMATOR

The longitudinal impedance of a collimator in the large
frequency domain (and for the relativistic case y >1) can
be found analytically. We will do that using formula (57).
Since asymptotically A, = k, only the diffracted field, i.e.,
the field depending on coefficients z,, contributes to the
impedance. Physically, this arises from the fact that only
the diffracted field radiated ahead can reach the relativistic
particle. Hence,

Zcoll(k) = —2(ZO/W)K2nZnJO(an) (Al)
where ¢ = a /b, and a and b are the exit pipe and collima-
tor radii, respectively.

The coefficients z, can be found from (48), with the
matrix and the right-hand side of it taken from Table II:

22 (v) == Jo(v,q)/v} +2¢%Z,,(t,,~ YuE_ ) b1
(A2)
where the quantities ¢,,, are defined in (49). Divide (A2)
by J(v,), multiply by Jy(»,q), and sum over I:
"2121]0(”14) =- 21-]02(”/‘])/”/2-]12("1) +2kZ,Jo(v,9)
'le(vl)_zzm(tm - ymE— )'}mJl(Vm)(Vnz't/q2 - Vlz)_l
(A3)
Summation here can be performed explicitly using the

following particular form of the Kneser—Sommerfeld for-
mula [13]:

-1 . _
21~]02(V1‘1)(”12 - x?) I (w) = mlo(gx) { Jo(gx) Yo(x)
—Jo(x)Yo(gx)} /40 (x)  (Ad)
where Y, is a Bessel function of the second kind.
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One can easily see that the second term of (A3) contain-
ing coefficients 7,, and y,, vanishes. First, interchange the
order of the summations over / and m. Then formula (A4)
applies with x =, /¢ and the result of the summation is
zZero.

Application of the same formula with x — 0 to the first
sum in (A3) gives

EIJOZ(V[q)/Vlzjlz(VI) == lei-r»no [Yo(x)_ YO(PX)]

= (Ing)/2. (A5)
Hence, for large energy and for large frequencies, the
impedance of a collimator is the following constant:

Z(x) = (Zo/ﬂ)ln(a/b)

From this formula, it may seem that the corresponding
wake field, which is the Fourier transform of the imped-
ance, diverges at zero distance behind the charge. That is
not necessarily true. Indeed, derivation of this formula is
based on the approximate equation (57), which is valid in
the limit y > k. Comparing (57) and the exact equation
(53), one can conclude that formula (A6) is not valid for
k>v. In this range of frequencies, impedance should
decrease at least as k™2

fork>1,y>1. (A6)
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