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Longitudinal Impedance of Simple
Cylindrically Symmetric Structures

SEMYON A. KHEIFETS

Abstract — A method derived [1] for calculation of the electromagnetic

fields of a point charge moving along an axis of cylindrically symmetric

structures is appfied here to cavities and collimators with side tubes. The

Iongitodinal impedance for such structures is calculated. In particular, the

impedance for a pipe loaded with a thin washer is also calculated, It is

shown that for large particle energy and for high frequencies, the longitudi-

nal impedunce of a collimator can be found analytically and that it is a

constant over a broad range of frequencies.

1. INTRODUCTION

A METHOD OF calculating the electromagnetic (EM)

fields excited by a point charge Q moving with a

constant velocity u along the axis of a cylindrical, perfectly

conducting pipe with an abrupt change in its cross section

was developed and published recently [1]. This method can

be generalized to make it applicable to any cylindrically

symmetric metallic structures that can be cut orthogonal to

the axis of symmetry into a number of regions such that

within each region the cross sections are identical. The

regions are assumed to be electrically connected to each

other. Each region can be bounded by one or several

coaxial metallic cylindrical surfaces.

In essence, the generalized method consists of three

steps. First, the Fourier components of the EM fields in

each region are expanded into series of cylindrical waves.

Each wave satisfies the boundary conditions on the cylin-

drical metallic surface. The series still contain an infinite

number of yet unknown coefficients. Second, continuity

and additional boundary conditions are imposed on the

EM field at each cross sectional interface between differ-

ent regions (field matching). Third, the resulting trart-

scendental equations are transformed into an infinite set of

linear algebraic equations for the expansion coefficients.

The approximate solution of the algebraic set of equations

is then obtained numerically by truncating it. Physically

interesting quantities, for example, the fields and the longi-,

tudinal coupling impedance, are expressed in terms of

these coefficients.

In the present paper, this method is applied to the case

of a point charge moving along the axis of either of the

two structures sketched in Fig. l(a) (a cylindrical cavity

with side pipes) and (b) (a cylindrical collimator). The

longitudinal impedances for such structures are calculated.

The results found here for a cavity with the side pipes of
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equal cross sections are compared with calcula’ Lions per-

formed by another method of matching fiel~ .ls on the

cylindrical surface r = a [2]. This comparison s ,hows good

agreement.

There is a certain advantage in matching f ields on the

interfaces z = constant rather than on the in [terfaces r =

constant. First, it lets one consider structures with indenta-

tions. Next, the two side pipes can have d ifferent radii.

The method presented allows one to take this case into

account practically without any :additional complications.

It is also straightforward to extend the met’ hod to the case

of a charge moving off the axis to find the transverse

impedance.

Some other practically interesting structures are particu-

lar cases of geometries considered here. Che example is a

cylindrical pipe loaded with a washer. Another example

considered here is a flange connection o f two tubes which

in the presence of a vacuum edge may form a very thin

cylindrical cavity. Two geometries consi dered in [1] (a pipe

with an abrupt increase or decrealse of its cross section) are

also particular cases of geometries cor ~sidered in the pre-

sent paper.

Of particular interest is the question of the behavior of

the impedance for very high frequencies. For the case of a

collimator, the asymptotic behavior f )f the impedance can

be calculated analytically. This cadcul ation can be found in

the Appendix. Under the assump tier N made in the present

work, the impedance is independ en~L of the frequency and

is equal to 120 in ( a /b) Q, where a is the cross section

radius of the pipe at the exit of the indentation.

The equations derived here are valid for any particle

velocity j3 = u/c, with c the speed of light. Thus, one can

solve for fields radiated by a cl-large with an arbitrary

energy. A note of caution is appro! priate here. For very low

~, the assumption that velocity is constant does not hold.

In that case, the problem shol uld be solved self-con-

sistently, as was done for example ~in [3]. A relativistic case

can be easily obtained by assumi ng y >>1, where y is the

Lorentz factor of the charge. M ost results obtained here

are pertinent for large y.

Throughout this paper, the ri~ @t-hand cylindrical coor-

dinate system r, f3, z is used. The current density of a point

charge moving along the axis of ‘the pipe is

(1)

where 8(x ) is Dirac’s 8 fun lction. If one defines the

Fourier components of any vector V for the angular
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(a’) (b)

Fig, I. CJ dindr’ically symmetric structures considered in the present
work. (a) Cawlty and (b) collimator of radius b and length g with side
pipes of r~ idii al and az.

then the FOUI :ier components of the current density are

Qi!i(r)
Jr= e ,0+ eOO+ e=~exp{iuz/u}. (3)

II. FIELD EXPANSIONS

Using well-kn own CXP cessions for the EM fields of a

point charge rno~ ring along the axis of a cylindrical pipe [4]

and for eigenfunc :tions of a pipe [5], h is easy to represent

the EM field com~ ~onents for any region shown in Fig. 1 as
an expansion intt > series of cylindrical waves with un-

known coefficient: \ (see, e.g., [1]). Let us introduce the

following notation:

k=ti/c (4)

T = k,@y (5]

Go(r, d) =Ko(’m’) -Io(m)Ko(~d)/Io( ~d) (8)

where d = al. az, or b and Ko, Kl, 10, and II are

modified Bessel functit MIS of the second and the first kind

and the zeroth and firs t order, respectively.

Then for the diffract ion region z > g/2 (region III in

Fig. 1), we have

l?: = – iMGo(r, a2) exp {ilcz/P} + X.B~ (v~/a~)

.Jo(v.r/aJ)exp { izA.2. } (lo)

@ = y/M4Gl(r, a2)e. xp{ikz//3} – ikZ. B~(v./aj)

.Jl(vnr/a2)exp {iz~.zn} (11)

where ~~z~ = -, and Jo and J, are Bessel func-

tions of the first kind and of the zeroth and the first order,

respectively.

Similarly, for the reflect ion region z < – g/2 (region I

in Fig. 1), we have

~,- = yMGl(r, al)exp{ikz/P} + iZ.B.-(v./al)

.Jl(vMr/al)~.l.exp { – i.z~aln } (12)

fi,- = – iMGo(r, al)exp{ikz/P} + X.Bn-(v~/a~)

.JO(vmr/al)exp { – iz~fll. } (13)

l?; = y/3MGl(r, al)exp {ikz/P} – ikZ.B.- (v./al)

.Jl(vnr/al)exp { – iz~.l.} (14)

i-.where A .I. = k

Finally, for the intermediate region – g/2 < z < g/2

(region 11 in Fig. 1), we have

~~=yMGl(r, b)exp{ikz/~ }–iZn(vn/b)

.J1(vnr/b)A~n(C+ exp {iz~~n} – C- exp{ – iz~bn})

(15)

~~ = – iMGo(r, b)exp{ikz/~} +lX. (v~/b2)

.Jo(vnr/b)(C+ exp{izAbn} +C-exp{–izA,n})

(16)

fij = y/3MG1(r, b)exp(ikz/~)– ikXn(vn/b)

.Jl(vnr/b)(C+exp {iz~~. } + C- exp{ – iz~~.})

where ~b.=~=

(17)

All the other field components are zero due to cylin-

drical symmetry of the problem.

The eigenvalues v. are defined by the boundary condi-

tion E=(z) = O for r = d, which gives the following for-

mula for v.:

Jo(v. ) =0, n=l,2,, ... co. (18)

They are assumed to be arranged in ascending order:
Vl <v’<.. . < cc. In all field expansions above, B.+ and

C * are unknown coefficients to be defined by the

boundary and continuity conditions on the interfaces z =

constant between adjacent cylindrical regions.

To ascertain the proper asymptotic behavior of the

diffracted field for z ~ m and the reflected field for z -+
— cc, the imaginary parts of the propagation constants

should be chosen positive (such a choice is known as the

radiation condition):

ImA~l~ >0 (19)

ImA~2~ >0. (20)

The same sign is chosen for the propagation constant in

region II:

ImA~~ >0. (21)

Each term in expressions (9)-(11) for the diffracted field

describes either the n th wave propagating in the positive z

direction, if k > Vn/a’, or an evanescent wave, if k <

V./a’. Similarly, each term in expressions (12)-(14) for

the reflected field describes either the n th wave propagat-

ing in the negative z direction, if k > V./al, or an evanes -
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cent wave, if k < Vn/al. For any given k, there are a finite

number of propagating and an infinite number of evanes-

cent waves.

III. BOUNDARY AND CONTINUITY CONDITIONS

The expansions of the EM fields given in the previous

section are constructed in such a way as to fulfill the

boundary conditions on the wall of the pipe in any region

with a constant pipe radius. For example, for r = a ~ and

for all z > g/2,

E:(z)=o. (22)

Consider now an interface between two regions. In the

plane of the interface:

(a)

(b)

the radial component of the electric field on the

inner side of the wall should be equal to zero for

all r;

all three components of the field should be contiim-

ous across the opening.

For example, for a cavity at z = g/2,

l?j(r) =Oforall az<r<b (23)

and for all r < a2,

fi~(r)=fi~(r) (24)

fi~(r)=llf(r) (25)

l?~(r)=tij(r). (26)

Analogous expressions can be written for another cavity

interface z = – g/2 and for a collimator. One of the three

conditions (24)–(26) is redundant [4] since all three field

components satisfy Maxwell’s equations. In what follows,

conditions (24) and (25) are chosen to determine unknown

expansion coefficients.

We introduce now the dimensionless variables

~=kb (27)

pl =l/ql = al\b (28)

pz=l/qz=az/b (29)

~=g/2b (30)

p=r/b. (31)

In these variables, the propagation constants are

x al n = Aulnb = ~- (32)

x = ~~z~b = ~-a2n (33)

~b~= Abnb =~~. (34)

It is also useful to redefine the expansion coefficients

Bn- = – (2ibQ/mc)exp { – 2~(K/F + xaln)}~n (35)

C~’ = – (2ibQ/nc)exp { + i~(K/fl + ~b~)}t~ (36)

C; = – (2ibQ/rc)exp { – ig(K/D – Xbn’)}.Yn (ST)

B; = + (2ibQ/nc)exp { + i~(K/B – xa2n)}zn. (38)

The expressions for the field components in the plane

z = — g/2 in these variables become

fi,- = (2 Q/ncb)exp{ – hcfj//3} [(K/21@2)Gl(r, al)

-1+(l/~l)~n~n~nJl( vnP/Pl)Aaln (39)

~~ = (2 Q/mcb)exp { – iKg/~}[(Kf12yf12)Gl(r, b)

+ $n~nJl(vnp)~,.( tnexp{2i~(~/P + ~bti)} - h)]
(40)

1? = –(2iQ/m~)exp { – i@/#}[(lC\2y2B2 )Go(r, al)z

+(l/pf)xnxnv:.Jo( vnP/Pl)l (41)

~~= –(2iQ/~cb)exp{ – iK~/~}[(~/2y2~2 )Go(r, b)

+ ZnvjYO(vnp)(tnexp {2ij3(K/@ + ibn)} + J].

(42)

Similar expressions for the field components in the plane

z = g/2 are

~~ = (2Q/mcb)exp {iKg/@} [( K/2y~2)Gl(r, d

-1+(1/~ 2)~.znVnJl(vnP/~ 2) Aa2. (43)

~~ = (2 Q/mcb)exp {iK~/~ } [( K/2y~2)Gl(r, b)

+ ZnVn~l(VnP)Xbn(tn - ynexp{ -zi~(K/P - ~bn)})l
(44)

~~ = –(2iQ/rcb)exp {iK~/~} [(~/’2y2~2)GO(r, a2)

-(1/P; )~nznv:Jo(~nP/P2)] (45)

~~ = –(2iQ/mcb)exp {i~~/~} [( K/2y2f12)GO(r, b)

+2 HV~Jo(v.P)(t. + ynexp{ -2ig?(~/B + x,.)})].

(46)

Note that these expressions are valid both for a cavity for

which PI <1 and pz <1 and for a collimator for which

pl>landp2>l,

IV. BASIC EQUATIONS

Unknown coefficients x., Y., tit, and Z. are defined by

the set of ?quations which are obtained by substituting

expressions (39) through (46) into (23) through (25) for the

interface z = g\2 and siinilar equations for, the second

interface z = – g\2. As was explained in [1], this set of

transcendental equations can be replaced by a simpler set

of algebraic equations.

Let us introduce a vector of

/xn\

coefficients

N=1,2,3,4. (47)

be written in matrix form:

L, N~l,2,3,4;

n,l=l,2. ..m. (48)
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TABLE I
COEFFICIENTS.4;~ AND RIGHT-HAND SIDES P:, OF (48)

FOR A CAVTTY

E+ = exp(21~(~/~ + ~,,,,)); E_ =exp(–2@(K/~ – A{,,,)); F(a) =Ko(TLI)/ItJ(Th)– Ko(Tu)/IO(TU); PI = ~l/b; P? =
.. -,. .

a2/b; g= g/Lb.

TABLE II
COEFFICIENTSA:~ AND RIGHT-HAND SIDES Pi OF (48)

FOR A COLLIMATOR

b/a2; ~=g/2b

Equation (48) constitutes an infinite system of linear alge-

braic equations for the unknown coefficients X:.

The coefficients A;~ and the right-hand sides P: of the

matrix equation (48) for a cavity are presented in Table I.

There

{

VnJo(vm P) J1(vn)/(v: ‘P2v:) if vn +Pvm
%.(p) =

%x(%)/(%+P%?J if Pm=pvfil.

(49)

In particular,

+~~(1) = i$n~J~(vn)/2. (50)

For a collimator, (48) looks the same but its coefficients

and the right-hand sides have a different meaning and are

presented in Table II.

Two geometries considered in [1], a pipe with an abrupt

increase or decrease of its cross section, are particular

cases of geometries considered in the present paper. For

example, the case of a charge passing through a decreasing

cross section can be obtained by assuming a a = b (or,

equivalently, p2 =1) and g = O in equations describing a

collimator. The same case can be obtained by assuming

al = b (or, equivalently, p ~=1) and g = O in equations

describing a cavity. Similarly, the case of a charge passing

through an increasing cross section can be obtained by

assuming al = b (or, equivalently, pl =1) and g = O in

equations describing a collimator. The same case can be
obtained by assuming a a = b (or, equivalently, p2 =1) and

g = O in equations describing a cavity. Using (5o), it is easY
to see that with necessary changes in notation, (48) indeed

reduces to (12) in [1].

Notice that for a smooth pipe for which pl = p2 = 1 or

qI = 92 =1, all P1 = 0. since Det lA~/~1 + O, only the trivial
solution X.N = O exists. That means that there is no radia-

tion in a smooth pipe, as it should be.

V. LONGITUDINAL COUPLING IMPEDANCE

The, usual expression for the longitudinal impedance is

z(k) = – ~J_mmdzEu(r =0, z)exp{-ikz/B} (51)
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where E,R is the radiative part of the field, i.e., the part

which depends on the expansion coefficients. Sometimes

an alternative definition of the impedance is used in which

the integration is performed over the difference between

the full field and the field of a charge in a smooth pipe.

This definition is useful only if both side pipe cross

sections have equal radii al = a ~ = a or, equivalently, PI

= p2 = p. In this case, the real parts of the impedance are

the same according to both definitions. The imaginary

parts differ by

AZ= - iZOK~~(a)/ry2~2 (52)

where 20= 377 Q is the impedance of free space and F(a)

is defined in Table I. In the general case of different pipe

radii, definition (51) is more useful and is used below.

Performing the integration in formula (51), we find

z(k) = -(zo/7)2&&@ - ia&’[l+(Tal/vn)2]

+ ~n(K\~ + %b)(eXp {2i~(&- K/@} ‘1)/’

[l+(~b/vn)2]

– tn(K\~ – Xb)(exp {2i~(Xb+ K\~)} -l)\

[l+(~b/v )2]

+ ‘n(K/~ : ‘.2.)/[’+(Ta2/v.)21) (53)

Formula (53) is valid for both a cavity and a collimator.

The expansion coefficients x., y., t., and z. in this

formula should be understood as solutions of correspond-

ing equations for a cavity and a collimator, respectively.

In the ultrarelativistic limit y ~ m, there is an alterna-

tive way of calculating the impedance for a cavity with

equal side pipe radii. Instead of integrating the field along

the axis of the structure r = O, one can as well integrate the

field along any line r = R [6]-[8]:

ZR(~) = – ~~~wdzEZ(r =R, z)exp(–ikz). (54)

Performing the integration, we find

Z~(k) = –(Zo/n)~n(xnJO( vnR/a)(~–~.l.)

+ yHJO(v.R/b)(ir+ ib)(exP {2@(&- ‘)} ‘1)

– t..lO(v.R/b)(~ - ~b)(exp{2@(~b+ K)} –1)

- )}. (55)+ zn.lo(vHR/a)(~ + ~a2.

A remarkable feature of this formula is that the right-hand

side of it does not depend on R in spite of its explicit
presence there.

In particular for a cavity, a convenient choice is R = a.

Due to the boundary condition (22), the regions z > g/2

and z < – g/2 do not contribute to the value of the

integral. Putting R = a in (55) yields

ZC~v(k) = –(ZO/T)~.~O(VnP){~.(K+X~)

.[exp{2ig(xb-K) }-1]

‘tn(K-ib)[eXp {’@b+K)}-l ]}. (56)

I 1 I I I I I I I

I 1 I 1 I 1 I 1 I I

2.4 2.6 2.8 3.0 3.2

PK = OU/C

Fig. 2. Real part of the Iongitudinaf impedance of a cavity as a function
of dimensionless frequency pK = a o\c. Here, a = al = a~, g/2 b =

0.302, and u/b = 0.152. In the expansions (9)–(17), 20 first terms were
used.

2.4 2.6 2.8 3.0 3.2

PK ~ OW/C

Fig. 3. The same as in Fig. 2 but for the imaginary part of the
impedance.

For a collimator, a convenient choice is R = b. In this

case due to boundary condition (22) the region – g/2 < z

e g/2 does not contribute to the value of the integral, and

we obtain (ql = b/al, qz = b/a’):

Zco,,(k) = –(zo/T)xn[x.Jo( vnql)(K– x~)

+ z.~&qz)(K + ~~)]. (57)

For large y, the impedances obtained by means of all the

formulas (53), (55), (56), and (57) agree very well and this

feature is used as a check in numerical codes.

VI. NUMERICAL RESULTS AND CONCLUSIONS

In general, the solution of (48) can be found only

numerically. Two computer codes, RCVTY (for the geom-

etry sketched in Fig. l(a)) and RCLlvfTR (for the geome-

try sketched in Fig. l(b)), have been written for this

purpose. An approximate solution is found by truncating
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I 1 I I I

1=

3,

4\

I 1 I 1 I

2.4 2.6 2.8

PK =O(IJ/C

Fig, 4. Illustration of the dependence of the real part of the impedance
on y for the same cawty as in Fig. 2. (1) y = 100, (2) y = 10, (3) y = 5,
(4) y =2, (5) y =1.4.

I 1 I 1 I

$

:’
z—

-200

L
2.4

I I

2.6 2,8

PK = OW/C

Fig. 5 The same as in Fig. 4 but for the imaginary part of the
impedance.

the matrix to a finite size, inverting it, and solving for the

coefficients. In a normal case, i.e., not for extreme values

of parameters, a matrix size of 20X 20 is usually sufficient

to obtain reasonable accuracy. The results are checked and

found to be independent on the matrix size up to the

maximum size of 100X 100 allowed by the codes. The

programs, if asked, can do an additional check for the

correctness of the solution. Namely, the coefficients found

are used to restore the continuity and the boundary condi-

1 I 1 I I I 1

0 10 20 30 40 50
PK = OW/C

Fig. 6. Real part of the longitudinal Impedance of a very thin cavity
(e.g., built of flanges) as a function of dimensionless frequency pK =
uti/c, with U=ul=ul, g/2 b= 0,025, and a/b =05.

Fig 7,

-40 ~

o 10 20 30 40 50
PK = OW/C

The same as in Fig. 6 but for the imagmary part of
impedance,

the

tions at the interfaces between different cylindrical re-

gions.

As an illustratior~ of the results obtained with the help of

RCVTY, the real and imaginary parts of the longitudinal

impedance for a cavity with the same dimensions as used

in [2] are represented in Figs. 2 and 3, respectively. The

plots are in good agreement with the result of that paper

for all the frequencies except those around the cutoff

frequencies of the pipe ka = 2.405.

The dependence of the impedance on the charge energy
is illustrated in Figs. 4 and 5. Here, the real and imaginary

parts of the longitudinal impedance of a cavity are plotted

for several Lorentz factors y. As one can see, from the

point of view of the impedance, y = 5 is already close

enough to cc and y =10 is indistinguishable from co.

The real and imaginary parts of the impedance of a very

thin cavity built out of two pipe flanges and a vacuum

edge electrically connecting them are plotted in Figs. 6 and

7, respectively.
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2007-_’_-n
I50 –

z

%“ 100 –—
d
z
cj

g 50 –
+
LY
a
n

40 —
w
(Y

L 4

.50LLLLL—I
o 2 4 6 8 10

pK = ofJ.J/c

Fig. 8. Red part of the longitudinal impedance of a washer in a pipe
(the SLAC type of structure) as a function of dimensionless frequency
p.= ucJ/c, with a = al =U2, g/2b = 0.217, and a/b= 0.281.

1 I 1 I 1 I 1 I 1

1 I 1 I ! I I I I

o 2 4 6 8 10
PK = OW/C

Fig. 9. The same as in Fig. 8 but for the imaginary part of the
impedance.

To illustrate the results obtained with the help of

RCLMTR, the real and imaginary parts of the impedance

of a washer in a pipe (thin collimator) for the SLAC

geometry are plotted in Figs. 8 and 9, respectively.

The impedance of a long collimator can be seen as the

sum of two impedances for an abrupt increase and de-

crease of the pipe cross section. The impedance in the

range of large frequencies, found using formula (57), coin-

cides with the impedance of an abrupt increase of the pipe

cross section found in [1]. This is a consequence of the fact

that the impedance of an abrupt decrease of the pipe cross

section tends to zero for large frequencies.

An analytic derivation of the asymptotic formula for the

impedance of a collimator is presented in the Appendix.

As is discussed there, the impedance is constant in the

frequency range K < y and then falls down.

It isinteresting to estimate the total energy loss A W of a

distributed charge passing through a collimator:,,

AW=~w dulj(u)12ReZC011 (k) (58)
—’x

where ~(u) is the Fourier transform of the charge density.

Let us assume j’(Q) to be Gaussian:

~(to) = (Q/2w)exp(- k202/2) (59)

where u is the rms of the longitudinal charge distribution.

If one assumes that Re ZCOII is constant and given by

(A6), then the total energy loss is

Aw= &lna/b. (60)

This expression is valid when u > b/y and agrees with the

formula for the total energy loss of a charge passing

through an abrupt change in a pipe cross section obtained

in [12].

For a point charge, u = O. If one assumes that Re ZCOll is

constant for u < y and is zero for K > y, as was discussed

above, then the total energy loss is proportional to y. That

conclusion is in agreement with an estimate [9] and

numerical calculations [10], [11] for a charge passing

through a hole in a screen.

APPENDIX

ASYMPTOTIC FORMULA FOR THE IMPEDANCE

OF A COLLIMATOR

The longitudinal impedance of a collimator in the large

frequency domain (and for the relativistic case y>> 1) can

be found analytically.~We will do that using formula (57).

Since asymptotically Ab = K, only the diffracted field, i.e.,

the field depending on coefficients z., contributes to the

impedance. ,Physically, this arises from the fact that only

the diffracted field radiated ahead can reach the relativistic

particle. Hence,

ZCO1l(k) = ‘2(zo/77)K~HZ~~o(V~~) (Al)

where q = a/b, and a and b are the exit pipe and collima-

tor radii, respectively.

The coefficients z. can be found from (48), with the

matrix and the right-hand side of it taken from Table II:

Z, K~:(V1) = – &( V,q)/V; +2q2K~m(tM – ~m~-)~[m

(A2)

where the quantities +,m are defined in (49). Divide (A2)

by J:( v,), multiply by .lO(V1q), and sum over 1:

K~,Z,~o(V,q) = – ~,@(V~q)/Vj~;(P~) +’2K2[~o(V[q)

J:(v,)-22m(lm – YmQ%W’m)(%M2 – W

(A3)

Summation here can be performed explicitly using the

following particular form of the Kneser-Sommerfeld for-

mula [13]:

21 J;(v,q)(v: –x’)-lJ;*(v,) =mYo(qx){ Jo(qx)yo(x)

–.Jo(x)yo(4x)}/4Jo(~) (A4)

where Y. is a Bessel function of the second kind.
u
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One can easily see that the second term of (A3) contain-

ing coefficients lM and yw vanishes. First, interchange the

order of the summations over 1 and m. Then formula (A4)

applies with x = v~ /q and the result of the summation is

zero.

Application of the same formula with x + O to the first

sum in (A3) gives

XJOlv[q)/@ll~[) = -~jyo[yo(+yo(Px)l

= (lnq)/2. (A5)

Hence, for large energy and for large frequencies, the

impedance of a collimator is the following constant:

ZCOll(~) = (ZO/r)ln(a/b) for~>>l, y>>l. (A6)

From this formula, it may seem that the corresponding

wake field, which is the Fourier transform of the imped-

ance, diverges at zero distance behind the charge. That is

not necessarily true. Indeed, derivation of this formula is

based on the approximate equation (57), which is valid in

the limit y >> K. Comparing (57) and the exact equation

(53). one can conclude that formula (A6) is not valid for\ ,.
K > y. In this range of frequencies; impedance should

decrease at least as k-2.
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